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Abstract: This paper addresses the problem of maintaining an autonomous robotic vehicle in
a moving triangular formation by regulating its position with respect to two leader vehicles.
The robotic vehicle has no a priori knowledge of the path described by the leaders and its goal
is to follow them by constantly regulating the inter-vehicle distances to a desired fixed value,
using range-only measurements. To solve this station keeping problem, we propose a control
strategy that estimates the formation speed and heading from the ranges obtained to the two
leading vehicles, and uses simple feedback laws for speed and heading commands to drive suitably
defined common and differential errors to zero. For straight-line motion, we provide guaranteed
conditions under which the proposed control strategy achieves local convergence of the distance
errors to zero. We also indicate how our design procedure can be extended to full dynamic models
of marine robotic vehicles equipped with inner loops for yaw and speed control. Simulation
results using realistic models are described and discussed.
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1. INTRODUCTION

Spawned by the advent of small embedded processors and
sensors and miniaturized actuators, there is widespread
interest in the development of fleets of autonomous marine
vehicles with the potential to drastically improve the means
available for ocean exploration and exploitation. In fact,
the use of multiple autonomous robotic vehicles acting
cooperatively has been steadily gaining more acceptance
as a way to increase the performance, reliability, and
effectiveness of automated systems at sea. The scientific
and commercial missions envisioned are manifold and
include marine habitat mapping, geophysical surveying,
and adaptive ocean sampling, to name but a few.
In some of the most challenging missions (e.g. marine
habitat mapping in complex 3D environments) it is funda-
mental that a number of vehicles carrying different sensor
suites and navigation equipment maneuver in formation
at close range, cooperating towards the acquisition of
environmental data. From a technical standpoint, meeting
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this objective requires that the vehicles be equipped with
advanced systems for networked navigation and control.
In a representative mission scenario, one of the vehicles
(known as the anchor) is equipped with an advanced
sensor suite for absolute geo-referencing so as to follow
a desired path or to maneuver along arbitrary trajectories
in response to episodic events. It is up to the remaining
vehicles to join and keep a desired formation with the
anchor, effectively moving along at the same speed. In these
circumstances, it is crucial that vehicles be parsimonious
with the information that they exchange over the inter-
vehicle communication system in order to reach formation.
A solution that is both elegant and cost-effective is to do
formation control by relying on inter-vehicle range mea-
surements only. The latter can be obtained by equipping
the vehicles with acoustic ranging devices.
The general problem of cooperative motion control has
been the subject of much research over the past few years,
as reflected in a sizable body of publications in the area
of networked control systems and robotics. Some of this
work falls in the scope of cooperative path following, where
a group of vehicles is required to maneuver along pre-
specified paths while keeping a desire formation pattern



(absolute formation control). See Ghabcheloo et al. (2009)
for work along these lines with applications in the marine
field. In the work reported, each vehicle is required to know
its absolute position and those of the neighboring vehicles.
This is in contrast with the work in Cao et al. (2007), where
the objective is not to do absolute formation control but
relative formation control instead. In this situation, each
vehicle is only required to know the position of some of
the neighbors in its own reference frame. From a practical
point of view, however, this still poses formidable challenges
when the vehicles move underwater.
Related work can be found in Desai et al. (1998, 2001) on
the so-called leader-follower formation control problem for
a formation graph with an arbitrary number of vehicles.
In the work cited, two approaches were proposed using
either range-bearing or range-range control, depending on
the available sensors. In both approaches, knowledge of the
leader motion was assumed. A strikingly different strategy
is described in Cao and Morse (2007, 2008), where a solution
is proposed for a 4-vehicle station keeping problem, using
exclusively range measurements. The authors formulate a
decentralized control policy using switched adaptive control.
The vehicle dynamics correspond to single integrators in
2D.
More recently, in Cao et al. (2011) the authors advance
algorithms to coordinate a formation of mobile agents
when the agents can only measure the distances to their
respective neighbors. To control the shape of the formation,
the solution proposed requires that subsets of non-neighbor
agents cyclically localize the relative positions of their
respective neighbor agents while these are held stationary,
and then move to reduce the value of a cost function;
the latter is nonnegative and assumes the zero value
precisely when the formation has correct distances. Again,
it is assumed that the mobile agents can be described by
kinematic points.
Motivated by the above considerations, and as a contribu-
tion towards the solution of the general formation keeping
problem, this paper addresses the simplified problem of
maintaining an autonomous vehicle in a moving triangular
formation with respect to two leader vehicles that move at
equal velocities, with a fixed distance between them. The
vehicle has no a priori knowledge of the path described by
the leaders and its goal is to follow them by constantly
regulating the inter-vehicle distances to desired values,
using range-only measurements. One real-world situation
that matches this scenario is that of a group composed of
two autonomous surface craft (leader vehicles) equipped
with GPS and radio communications and one autonomous
underwater vehicle (AUV) lacking both. In this case, the
follower AUV computes its distance to each of the surface
craft by measuring the time-of-flight of acoustic pulses.
In the present paper we adopt a kinematic model for the
follower AUV that is not a simple double integrator. Instead,
the model is written in terms of the vehicle’s speed and
heading. We propose a control strategy that estimates the
formation speed and heading from the ranges obtained to
the two leading vehicles, and uses simple feedback laws
for speed and heading commands to drive suitably defined
common and differential errors to zero. For straight-line
motion, we provide guaranteed conditions under which
the proposed control strategy achieves local convergence

ψf

ψf

z2

z1

d

d

d

xd

v2

v1

α1
α2

θ1

θ2

x2

x1

ψv
x

Fig. 2.1. Triangular formation control
of the distance errors to zero. As an intermediate step
needed to apply the algorithms derived in the real world,
we indicate how our design procedure can be extended to
a full dynamic model of marine robotic vehicles equipped
with inner loops for yaw and speed control. Simulation
results using a realistic model of an existing marine vehicle
and more complex paths are described and discussed.
The paper is organized as follows: in Section 2, we present
an overview of the problem at hand and introduce some
basic notation; in Section 3 we derive the error dynamics
and the control laws for linear velocity and heading, present
the formation heading estimation method, and outline the
stability proofs; in Section 4 we introduce the dynamic
model for a representative marine vehicle and describe an
extension of our work to such a scenario; in Section 5 we
show some simulation results using this model. Finally, in
Section 6 we present our conclusions and possible future
directions for this research.

2. PROBLEM STATEMENT

The control problem studied in this paper is depicted in Fig.
2.1, which shows two leading vehicles and a follower. The
objective is for the trailing vehicle (vehicle 0) to follow the
other two in a triangular formation, at the same distance
d from each of them. In the figure, x should converge to
the desired position xd. The control signals are the linear
velocity v and the heading ψ, and the kinematic model of
the follower is given by

ẋ =
[
v cosψ
v sinψ

]
, (2.1)

where x ∈ R2 denotes its Cartesian position. The leader
vehicles (1 and 2) move at a distance d from each other,
according to

ẋi =
[
vi cosψi
vi sinψi

]
, i = 1, 2 (2.2)

where (v1 + v2)/2 = vf is the formation speed. In what
follows we assume that v1 = v2 and ψ1 = ψ2. We further
assume that the total velocity vector of each leading vehicle
is always perpendicular to the line segment that joins them.
Formally, we define the formation orientation, denoted
ψf , as ψ1 = ψ2 = ψf . We assume that ψf is unknown to
vehicle 0. Note that there exists a symmetric solution to the
problem, with the desired position xd mirrored in relation
to the segment defined by x2 x1. We designate the solution
shown in Fig. 2.1 by following motion, and the mirrored



solution by leading motion. In the remainder of this paper,
we will only deal with the case of following motion.
The trailing vehicle can measure its distance to each leader,
given by zi = ‖x− xi‖. From the range measurements, we
define the common and differential mode errors

ε = e1 + e2

2 = z1 + z2

2 − d

δ = e2 − e1 = z2 − z1,

with ei = zi − d, i = 1, 2. The control problem consist of
deriving feedback laws for v and ψ to drive ε and δ to zero
or, equivalently, to drive x to xd.

3. CONTROL DESIGN

This section describes the strategy adopted to regulate
the motion of the trailing vehicle. We assume its starting
position is behind the two leading vehicles, relative to their
movement direction. Two separate controllers are designed,
one to regulate the vehicle speed and one for the vehicle
heading. Each controller is responsible for stabilizing a
different error measure, the common mode error and the
differential mode error, respectively.

3.1 Error dynamics

From the definition of zi, it follows that

żi = (xi − x)T (ẋi − ẋ)
zi

.

Inserting (2.1) and (2.2) in the above equation yields
żi = vi cos(αi − ψf )− v cos(αi − ψ), (3.1)

where αi is the angle of the unit vector[
cosαi
sinαi

]
= xi − x

zi
.

Simple computations show that the relations between αi
and the interior angles of the triangle θi in Fig. 2.1 are
given by

α1 = θ1 + ψf −
π

2
α2 = −θ2 + ψf + π

2 .

The law of cosines allows us to obtain the following
expressions for θi

θ1 = arccos
(
z2

1 + d2 − z2
2

2 d z1

)
θ2 = arccos

(
z2

2 + d2 − z2
1

2 d z2

)
.

Although the control strategy holds potential to be applied
to other types of trajectories, as shown later, the results
presented in the next sections assume the simpler case of
straight line constant-speed motion for the two leading
vehicles. In this case, v1 = v2 = vf , and the error dynamics
for ε and δ become

ε̇ = cosβ
(
vf cosϕ− v cos(ϕ+ ψ̃)

)
(3.2)

δ̇ = 2 sin β
(
vf sinϕ− v sin(ϕ+ ψ̃)

)
, (3.3)

where

β = α1 − α2

2 = θ1 + θ2

2 − π

2
ϕ = α1 + α2

2 − ψf = θ1 − θ2

2 ,

and ψ̃ = ψf − ψ is the heading error. Notice that θ1 and
θ2 are interior angles of the same triangle, and therefore
0 < θ1, θ2, θ1 + θ2 < π, β ∈ (−π2 , 0) and ϕ ∈ (−π2 ,

π
2 ).

3.2 Speed controller

We propose the following speed controller to regulate the
common mode error ε to zero:

v = Ks
pε+Ki

∫ t

0
ε dτ, (3.4)

where Ks
p > 0 and Ki > 0 are the proportional and

integral gains, respectively. The rationale for the proposed
control law can be explained by observing that when the
leader vehicles are describing a straight-line trajectory with
constant speed vf , ψ = ψf and δ = 0 (i.e., x0 is placed on
the perpendicular bisector of the x1x2 line segment), the
dynamics of ε in (3.2) reduce to

ε̇ = cosβ(vf − v). (3.5)
In this case, and since cosβ > 0, a control law v = vf+Ks

pε,
Ks
p > 0 would exponentially stabilize the origin ε = 0,

provided β does not converge to −π2 . As vf is unknown,
we include an integral term to learn it.
Theorem 1. Consider the overall system consisting of two
leader vehicles (1 and 2) undergoing a straight-line motion
with constant but unknown velocity vf > 0. Suppose that
ψ = ψf and that vehicle 0 lies in a neighborhood of the
perpendicular bisector of x1x2, in a following position.
Then, for a sufficiently small integral gain Ki (with respect
to Ks

p), the control law (3.4) locally exponentially stabilizes
ε to the origin ε = 0.

Proof. (Theorem 1) Defining ξ̇ = Kiε, we get v = ξ+Ks
pε.

Introducing the error term ṽ = ξ − vf yields ˙̃v = ξ̇ −
v̇f = Kiε. Using (3.5) we obtain[

ε̇
˙̃v

]
=
[
−Ks

p cosβ − cosβ
Ki 0

] [
ε
ṽ

]
. (3.6)

Linearizing system (3.6) at the equilibrium point corre-
sponding to the equilateral triangular position (ε = 0,
δ = 0, β∗ = π

6 ), it follows that the eigenvalues of the
state matrix are negative for Ki <

√
3

8 K
s
p , thus proving the

theorem. 2

3.3 Heading controller

For the heading controller we propose the following control
law that uses the differential mode error δ:

ψ = ψ̂f + γ(Kh
p δ), (3.7)

where Kh
p > 0, ψ̂f denotes an estimate of the formation

heading ψf , and γ is any function such that sin(γ(ay))y >
0,∀a > 0. An example is the saturation function γ(y) =
π
2 sat(y). For a constant speed straight-line motion with
ε = 0 and v = v1 = v2, (3.3) yields

δ̇ = 2vf sin β
(
sinϕ− sin(ϕ+ ψ̃)

)
. (3.8)

The use of γ is motivated by the fact that the control law
appears within a sine argument.
Theorem 2. Consider the overall system consisting of two
leader vehicles (1 and 2) describing a straight-line motion
with constant velocity vf > 0. Suppose that v = vf , ψf
is known and vehicle 0 lies in a trailing position, and



that there exist positive constants D > µ > 0 such that
d+ µ < z1 + z2 < D. Then, the control law (3.7) stabilizes
δ to the origin δ = 0.

The next result is instrumental in proving Theorem 2.
Proposition 1. Suppose that z1 + z2 > d. Then, the signal
of sinϕ is the same as the signal of δ, i.e., sin(ϕ)δ > 0.

Proof. (Proposition 1) For δ = 0, z1 = z2 and the terms
in ϕ cancel out. For δ > 0 and z1 + z2 > d, we have

z2
2 + d2 − z2

1
2 d z2

>
z2

1 + d2 − z2
2

2 d z1
=⇒ θ1 > θ2
=⇒ ϕ > 0.

An analogous argument can be derived for δ < 0. 2

Remark 1. The condition z1 + z2 ≥ d is a physical
constraint, since vehicles 1 and 2 are separated by a distance
d. When z1 + z2 = d, vehicle 0 is located along the line
segment x1x2. This does not fit the definition of a following
motion.

Proof. (Theorem 2) Define the candidate Lyapunov func-
tion

Vh = 1
2δ

2 > 0.

Using (3.8) and the control law (3.7) we obtain
V̇h = 2vf sin β

(
sinϕ− sinϕ cos ψ̃ − cosϕ sin ψ̃

)
δ

= 2vf sin β((
1− cos(γ(Kh

p δ))
)

sinϕ+ cosϕ sin(γ(Kh
p δ))

)
δ

< 0.
The last condition stems from the fact that sin(ϕ)δ > 0,
sin(γ(Kh

p δ))δ > 0 and, because d+ µ < z1 + z2 < D,D >
µ > 0, there exist positive constants ci, i = 1, 2, 3 such that
sin β < −c1, cosβ > c2 and cosϕ > c3. 2

3.4 Stability of the overall system

Theorem 3. Consider the overall system composed of two
leader vehicles (1 and 2) describing a straight-line motion
with constant velocity vf > 0. Suppose that ψf is known
and that vehicle 0 lies in a small neighborhood of the
desired position xd. Then, for appropriately chosen gains
Ki and Ks

p , control laws (3.4) (3.7) stabilize ε and δ to the
origin ε = δ = 0.

Proof. (Theorem 3) Define x = [ε ṽ δ]T and let ẋ = f(x)
be the dynamic equations of (3.2), (3.3) in closed loop
with (3.4), (3.7). Further let ẋ = f∗(x) be the simplified
dynamics (3.5), (3.8), also in closed loop. We first show
that the equilibrium point x = 0 is locally exponentially
stable. To this effect, we consider the Lyapunov function

V = xTPx,
with

P =


(Ki + cosβ∗) sec2 β∗

2Kp

1
2 secβ∗ 0

1
2 secβ∗

1 +K2
p +Ki secβ∗

2KiKp
0

0 0 1
2

 .

Computing its time derivative along the trajectories ẋ =
f∗(x) yields

V̇ ≤ aεε2 + aṽ ṽ
2 + aδδ

where

aε = −ρ+ 1
2(1− ρ)

(
Ks
p + 1

Ks
p

+ Ki

Ks
p

secβ∗
)

aṽ = −Ki secβ∗(1− ρ) + aε

aδ = 2vf sin β
(
sinϕ− sin(ϕ− γ(Kh

p δ))
)

and ρ = cosβ secβ∗ is viewed as an external signal. It
can be shown from the definition of ρ and β that, if ε
is restricted to a bounded region |ε| < d

2 − µ, µ > 0 and
appropriate values of Ks

p and Ki are chosen, there exist
positive constants q11, q22 and q33 such that q11 ≤ −aε,
q22 ≤ −aṽ and q33|δ| ≤ −aδδ. This, in turn, yields

V̇ ≤ −xTQx < 0,
with Q = diag(q11, q22, q33) positive definite, guaranteeing
local exponential stability. For the second step, we are now
interested in the full dynamics, and therefore we introduce
f̃(x) = f(x)− f∗(x)

=

cosβ(vf (cosϕ− 1)− v(cos(ϕ− γ(Kh
p δ))− 1))

0
2 sin β(vf − v) sin(ϕ− γ(Kh

p δ))

 .
In this case, ẋ = f∗(x) + f̃(x). Using the same Lyapunov
function V , we obtain

V̇ ≤ −xTQx + 2xTP f̃(x).
From the fact that for every small η > 0, there exists r > 0
such that

||f̃(x)|| < η||x||, ∀||x||<r,
it follows that

V̇ ≤ − (λmin(Q)− 2ηλmax(P )) ||x||2.
Choosing a small enough η guarantees that V̇ is negative
definite in a neighborhood of the origin. 2

3.5 Formation heading estimation

While the control law (3.7) has no dependency on the
speed of the leading vehicles, it does depend on the
formation heading. The availability of heading information
is a reasonable assumption under many scenarios because
the acoustic devices used to measure ranges can often
transmit additional information, albeit at low data rate.
Nevertheless, it restricts the generality and applicability
of the approach. In order to eliminate this dependence,
we can estimate the formation heading from the observed
distances. Replacing αi into (3.1), we obtain two different
estimates for ψf :

ψ1
f = arcsin

(
v1

v
sin(θ1)− ż1

v

)
− θ1 + ψ

ψ2
f = arcsin

(
−v2

v
sin(θ2) + ż2

v

)
+ θ2 + ψ.

The exact values of żi are not known, but can be estimated
from the evolution of zi, using e.g. a Kalman filter for the
model

ζ̇i1 = ζi2

ζ̇i2 = wi
ẑi = ζi1 + ni,



where wi and ni denote process and measurement noise,
respectively. In this case, either the following estimates for
ψf

ψ̂1
f = arcsin

(
ξ

v
sin(θ1)−

˙̂z1

v

)
− θ1 + ψ

ψ̂2
f = arcsin

(
− ξ
v

sin(θ2) +
˙̂z2

v

)
+ θ2 + ψ

or the circular mean

ψ̂f = arg
(

1
2(exp(i · ψ̂1

f ) + exp(i · ψ̂2
f ))
)

can be used to obtain the following result.
Theorem 4. Consider the conditions in Theorem 1 and
suppose that z̈i(t) and the noises wi(t) and ni(t) are
bounded signals. Then, the estimation error ψ̃f = ψ̂f − ψf
converges to a small neighborhood of zero. More precisely,
there exist positive constants ci, i = 1, 2, 3 such that

lim
t→∞

sup |ψ̃(t)| ≤
2∑
i=1

(
c1 lim
t→∞

sup |wi(t)|

+c2 lim
t→∞

sup |ni(t)|+ c3 lim
t→∞

sup |z̈i(t)|
)
.

4. EXTENSION TO MARINE VEHICLES

This section indicates how the results derived can be applied
to autonomous marine vehicles. To this effect, we adopt
the model of the MEDUSA class of autonomous semi-
submerged robotic vehicles developed at the Laboratory
of Robotics and Systems in Engineering and Science
(LARSyS), Instituto Superior Técnico, shown in Fig. 4.1.
Each Medusa weighs approximately 30Kg and consists
of two stacked longitudinal acrylic housings, with a total
length of around 1m. It carries a standard EPIC single-
board computer, a combined inertial measurement unit
and attitude heading reference system, a GPS receiver
and an underwater camera. A long-range 802.11 interface
is used for surface communications, while an acoustic
modem enables underwater communication. The vehicle
is propelled by two side-mounted, forward-facing stern
thrusters that directly control surge and yaw motion.
Since the vehicle only operates on the horizontal plane, its
kinematics equations take the simple form

ẋ = u cosψ − v sinψ (4.1)
ẏ = u sinψ + v cosψ
ψ̇ = r,

where u (surge speed) and v (sway speed) are the body
axis components of the velocity of the vehicle, x and y are
the Cartesian coordinates of its center of mass, ψ defines
its orientation (heading angle), and r its angular velocity.
Under an unperturbed straight-line motion, r = v = 0 and
(4.1) reduces to our simple kinematic model (2.1).
The motions in heave, roll and pitch can be neglected, as
the vehicle is a surface craft with large enough metacentric
height. The resulting simplified dynamic equations of
motion for surge, sway and yaw are

muu̇−mvvr + duu = τu
mv v̇ +muur + dvv = 0
mr ṙ −muvuv + drr = τr,

Fig. 4.1. Front and side view of the Medusa AMV

where τu stands for the external force in surge (thruster
common mode), τr for the external torque (thruster
differential mode), the m terms represent vehicle masses
and hydrodynamic added masses, and the d terms are
functions of the velocity and represent hydrodynamic
damping effects. The thruster model includes a first order
system K0/(s+K0), with K0 = 7.2115 and an additional
delay of 0.346 s. The full set of Medusa physical parameters
can be found in Ribeiro et al. (2012).
We consider the practical situation in which there exist
inner-loop controllers designed to track reference signals
in u and ψ. These autopilot controllers are also detailed in
Ribeiro et al. (2012).
This model has been used for simulations and hardware-
in-the-loop testing, and has been fitted with extensive
experimental data, providing an accurate representation of
the real dynamics of the vehicle. While the current vehicle
is restricted to surface operations, the proposed motion
control algorithms hold for the future envisioned scenario of
constant-depth underwater operations supported by surface
vehicles.

5. SIMULATION RESULTS

Simulations were run using MATLAB with the complete
model of the Medusa. The leading vehicles follow a
predetermined lawnmower path with vf = 0.2m/s. The
paths of the leading vehicles (gray) and of the follower
(black) are presented in Fig. 5.1.
Fig. 5.2 shows the common and differential mode errors.
Both tend towards 0 in steady state although, turns are
accompanied by some additional error. Note, however, that
common-mode error stays below 0.2 m, and differential
mode error never goes over 0.5 m. The heading estimation
error, ψ̃, is also shown. While turning, v1 6= v2 6= v,
deteriorating the estimate ψ̂. Even so, it tracks the
formation heading with a maximum error under 30 ◦.
The speed and heading evolution are shown in Fig. 5, versus
the formation parameters. The vehicle heading displays
some overshoot, but quickly tends to zero error when in
straight-line movement, where all simplifying assumptions
are valid. The speed controller exhibits a slight oscillation,
even in straight line. This oscillation is mostly due to
the complex dynamics involved, with significant command
delays, and does not occur when using simplified dynamics.



Fig. 5.1. Vehicle Paths. The maneuver starts on the lower
left corner. The leader vehicles and the follower vehicle
are shown in light and dark colours, respectively.

Fig. 5.2. Time evolution of the common mode, differential
mode, and heading estimation error ε

6. CONCLUDING REMARKS

This paper advanced a solution to a three-vehicle formation
keeping problem where a follower moves in a triangular
formation behind two leading vehicles, using only inter-
vehicle range measurements and with no knowledge of the
path taken by the leaders.
Proofs of error convergence were presented for a straight-
line motion, and preliminary simulation results were
described for a lawnmower motion, using the dynamics
of a real marine vehicle.
The next step in the development of this approach will
be to extend the algorithm to deal with more realistic

Fig. 5.3. Time evolution of the vehicle and formation speeds
v and vf , and headings ψ and ψf

conditions where range measurements are only available
at discrete points in time, usually with a period of several
seconds, and subjected to sensor noise and outliers, as well
as frequent communication delays and temporary losses.
Future work will address the implementation and testing
of selected algorithms in real marine scenarios using the
Medusa vehicles developed at the ISR/IST.
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